
Chapter 2
Deterministic Models in Quantum Notation

2.1 The Basic Structure of Deterministic Models

For deterministic models, we will be using the same Dirac notation. A physical state
|A〉, where A may stand for any array of numbers, not necessarily integers or real
numbers, is called an ontological state if it is a state our deterministic system can
be in. These states themselves do not form a Hilbert space, since in a deterministic
theory we have no superpositions, but we can declare that they form a basis for a
Hilbert space that we may herewith define [102, 122], by deciding, once and for all,
that all ontological states form an orthonormal set:

〈A|B〉 ≡ δAB. (2.1)

We can allow this set to generate a Hilbert space if we declare what we mean when
we talk about superpositions. In Hilbert space, we now introduce the quantum states
|ψ〉, as being more general than the ontological states:

|ψ〉 =
∑

A

λA|A〉,
∑

A

|λA|2 ≡ 1. (2.2)

A quantum state can be used as a template for doing physics. With this we mean the
following:

A template is a quantum state of the form (2.2) describing a situation where
the probability to find our system to be in the ontological state |A〉 is |λA|2.

Note, that λA is allowed to be a complex or negative number, whereas the phase of
λA plays no role whatsoever. In spite of this, complex numbers will turn out to be
quite useful here, as we shall see. Using the square in Eq. (2.2) and in our definition
above, is a fairly arbitrary choice; in principle, we could have used a different power.
Here, we use the squares because this is by far the most useful choice; different
powers would not affect the physics, but would result in unnecessary mathematical
complications. The squares ensure that probability conservation amounts to a proper
normalization of the template states, and enable the use of unitary matrices in our
transformations.
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Occasionally, we may allow the indicators A,B, . . . to represent continuous vari-
ables, a straightforward generalization. In that case, we have a continuous determin-
istic system; the Kronecker delta in Eq. (2.1) is then replaced by a Dirac delta, and
the sums in Eq. (2.2) will be replaced by integrals. For now, to be explicit, we stick
to a discrete notation.

We emphasise that the template states are not ontological. Hence we have no
direct interpretation, as yet, for the inner products 〈ψ1|ψ2〉 if both |ψ1〉 and |ψ2〉
are template states. Only the absolute squares of 〈A|ψ〉, where〈A| is the conjugate
of an ontological state, denote the probabilities |λA|2. We briefly return to this in
Sect. 5.5.3.

The time evolution of a deterministic model can now be written in operator form:

|A(t)〉 = ∣∣P (t)
op A(0)

〉
, (2.3)

where P
(t)
op is a permutation operator. We can write P

(t)
op as a matrix P

(t)
AB containing

only ones and zeros. Then, Eq. (2.3) is written as a matrix equation,

|A(t)〉 = UAB(t)|B(0)〉, U(t)AB = P
(t)
AB. (2.4)

By definition therefore, the matrix elements of the operator U(t) in this bases can
only be 0 or 1.

It is very important, at this stage, that we choose P
(t)
op to be a genuine permutator,

that is, it should be invertible.1 If the evolution law is time-independent, we have

P (t)
op = (

P (δt)
op

)t/δt
, Uop(t) = (

Uop(δt)
)t/δt

, (2.5)

where the permutator P
(δt)
op , and its associated matrix Uop(δt) describe the evolution

over the shortest possible time step, δt .
Note, that no harm is done if some of the entries in the matrix U(δt)ab , instead

of 1, are chosen to be unimodular complex numbers. Usually, however, we see no
reason to do so, since a simple rotation of an ontological state in the complex plane
has no physical meaning, but it could be useful for doing mathematics (for example,
in Sect. 15 of Part II, we use the entries ±1 and 0 in our evolution operators).

We can now state our first important mathematical observation:
The quantum-, or template-, states |ψ〉 all obey the same evolution equation:

|ψ(t)〉 = Uop(t)|ψ(0)〉. (2.6)

It is easy to observe that, indeed, the probabilities |λA|2 evolve as expected.2

Much of the work described in this book will be about writing the evolution
operators Uop(t) as exponentials: Find a Hermitian operator Hop such that

1One can imagine deterministic models where P
(t)
op does not have an inverse, which means that

two different ontological states might both evolve into the same state later. We will consider this
possibility later, see Chap. 7.
2At this stage of the theory, one may still define probabilities to be given as different functions of
λA, in line with the observation just made after Eq. (2.2).
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Uop(δt) = e−iHopδt , so that Uop(t) = e−iHopt . (2.7)

This elevates the time variable t to be continuous, if it originally could only be an
integer multiple of δt . Finding an example of such an operator is actually easy. If,
for simplicity, we restrict ourselves to template states |ψ〉 that are orthogonal to the
eigenstate of Uop with eigenvalue 1, then

Hopδt = π − i

∞∑

n=1

1

n

(
Uop(nδt) − Uop(−nδt)

)
(2.8)

is a solution of Eq. (2.7). This equation can be checked by Fourier analysis, see
Part II, Sect. 12.2, Eqs. (12.8) – (12.10).

Note that a correction is needed: the lowest eigenstate |∅〉 of H , the ground state,
has Uop|∅〉 = |∅〉 and Hop|∅〉 = 0, so that Eq. (2.8) is invalid for that state, but here
this is a minor detail3 (it is the only state for which Eq. (2.8) fails). If we have a
periodic automaton, the equation can be replaced by a finite sum, also valid for the
lowest energy state, see Sect. 2.2.1.

There is one more reason why this is not always the Hamiltonian we want: its
eigenvalues will always be between 0 and 2π/δt , while sometimes we may want
expressions for the energy that take larger values (see for instance Sect. 5.1).

We do conclude that there is always a Hamiltonian. We repeat that the ontological
states, as well as all other template states (2.2) obey the Schrödinger equation,

d

dt
|ψ(t)〉 = −iHop|ψ(t)〉, (2.9)

which reproduces the discrete evolution law (2.7) at all times t that are integer mul-
tiples of δt . Therefore, we always reproduce some kind of “quantum” theory!

2.1.1 Operators: Beables, Changeables and Superimposables

We plan to distinguish three types of operators:

(I) beables: these denote a property of the ontological states, so that beables are
diagonal in the ontological basis {|A〉, |B〉, . . .} of Hilbert space:

Oop|A〉 = O(A)|A〉, (beable). (2.10)

(II) changeables: operators that replace an ontological state by another ontological
state, such as a permutation operator:

Oop|A〉 = |B〉, (changeable); (2.11)

These operators act as pure permutations.

3In Part II, we shall see the importance of having one state for which our identities fail, the so-called
edge state.
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(III) superimposables: these map ontological states onto superpositions of ontolog-
ical states:

Oop|A〉 = λ1|A〉 + λ2|B〉 + · · · . (2.12)

Now, we will construct a number of examples. In Part II, we shall see more examples
of constructions of beable operators (e.g. Sect. 15.2).

2.2 The Cogwheel Model

One of the simplest deterministic models is a system that can be in just 3 states,
called (1), (2), and (3). The time evolution law is that, at the beat of a clock,
(1) evolves into (2), (2) evolves into (3), and state (3) evolves into (1), see Fig. 2.1a.
Let the clock beat with time intervals δt . As was explained in the previous section,
we associate Dirac kets to these states, so we have the states |1〉, |2〉, and |3〉. The
evolution operator Uop(δt) is then the matrix

Uop(δt) =
(0 0 1

1 0 0
0 1 0

)
. (2.13)

It is now useful to diagonalize this matrix. Its eigenstates are |0〉H , |1〉H , and |2〉H ,
defined as

|0〉H = 1√
3

(|1〉 + |2〉 + |3〉),
|1〉H = 1√

3

(|1〉 + e2πi/3|2〉 + e−2πi/3|3〉), (2.14)

|2〉H = 1√
3

(|1〉 + e−2πi/3|2〉 + e2πi/3|3〉),
for which we have

Uop(δt)

( |0〉H
|1〉H
|2〉H

)
=

⎛

⎝
|0〉H

e−2πi/3|1〉H
e−4πi/3|2〉H

⎞

⎠ . (2.15)

In this basis, we can write this as

Uop = e−iHopδt , with Hop = 2π
3δt

diag(0,1,2). (2.16)

At times t that are integer multiples of δt , we have, in this basis,

Uop(t) = e−iHopt , (2.17)

Fig. 2.1 a Cogwheel model
with three states. b Its three
energy levels
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but of course, this equation holds in every basis. In terms of the ontological basis of
the original states |1〉, |2〉, and |3〉, the Hamiltonian (2.16) reads

Hop = 2π
3δt

( 1 κ κ∗
κ∗ 1 κ

κ κ∗ 1

)
, with κ = − 1

2 + i
√

3
6 , κ∗ = − 1

2 − i
√

3
6 . (2.18)

Thus, we conclude that a template state |ψ〉 = λ(t)|1〉+μ(t)|2〉+ν(t)|3〉 that obeys
the Schrödinger equation

d

dt
|ψ〉 = −iHop|ψ〉, (2.19)

with the Hamiltonian (2.18), will be in the state described by the cogwheel model at
all times t that are an integral multiple of δt . This is enough reason to claim that the
“quantum” model obeying this Schrödinger equation is mathematically equivalent
to our deterministic cogwheel model.

The fact that the equivalence only holds at integer multiples of δt is not a restric-
tion. Imagine δt to be as small as the Planck time, 10−43 seconds (see Chap. 6),
then, if any observable changes take place only on much larger time scales, devia-
tions from the ontological model will be unobservable. The fact that the ontological
and the quantum model coincide at all integer multiples of the time dt , is physi-
cally important. Note, that the original ontological model was not at all defined at
non-integer time; we could simply define it to be described by the quantum model
at non-integer times.

The eigenvalues of the Hamiltonian are 2π
3δt

n, with n = 0,1,2, see Fig. 2.1b. This
is reminiscent of an atom with spin one that undergoes a Zeeman splitting due to
a homogeneous magnetic field. One may conclude that such an atom is actually a
deterministic system with three states, or, a cogwheel, but only if the ‘proper’ basis
has been identified.

The reader may remark that this is only true if, somehow, observations faster than
the time scale δt are excluded. We can also rephrase this. To be precise, a Zeeman
atom is a system that needs only 3 (or some other integer N ) states to characterize
it. These are the states it is in at three (or N ) equally spaced moments in time. It
returns to itself after the period T = Nδt .

2.2.1 Generalizations of the Cogwheel Model: Cogwheels with N
Teeth

The first generalization of the cogwheel model (Sect. 2.2) is the system that per-
mutes N ‘ontological’ states |n〉ont, with n = 0, . . .N − 1, and N some positive
integer > 1. Assume that the evolution law is that, at the beat of the clock,

|n〉ont → |n + 1 mod N〉ont. (2.20)

This model can be regarded as the universal description of any system that is pe-
riodic with a period of N steps in time. The states in this evolution equation are
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regarded as ‘ontological’ states. The model does not say anything about ontological
states in between the integer time steps. We call this the simple periodic cogwheel
model with period N .

As a generalization of what was done in the previous section, we perform a dis-
crete Fourier transformation on these states:

|k〉H def= 1√
N

N−1∑

n=0

e2πikn/N |n〉ont, k = 0, . . .N − 1; (2.21)

|n〉ont = 1√
N

N−1∑

k=0

e−2πikn/N |k〉H . (2.22)

Normalizing the time step δt to one, we have

Uop(1)|k〉H = 1√
N

N−1∑

n=0

e2πikn/N |n + 1 mod N〉ont = e−2πik/N |k〉H , (2.23)

and we can conclude

Uop(1) = e−iHop; Hop|k〉H = 2πk
N

|k〉H . (2.24)

This Hamiltonian is restricted to have eigenvalues in the interval [0,2π). where
the notation means that 0 is included while 2π is excluded. Actually, its definition
implies that the Hamiltonian is periodic with period 2π , but in most cases we will
treat it as being defined to be restricted to within the interval. The most interesting
physical cases will be those where the time interval is very small, for instance close
to the Planck time, so that the highest eigenvalues of the Hamiltonian will be so large
that the corresponding eigen states may be considered unimportant in practice.

In the original, ontological basis, the matrix elements of the Hamiltonian are

ont〈m|Hop|n〉ont = 2π

N2

N−1∑

k=1

ke2πik(m−n)/N . (2.25)

This sum can we worked out further to yield

Hop = π

(
1 − 1

N

)
− π

N

N−1∑

n=1

(
i

tan(πn/N)
+ 1

)
Uop(n). (2.26)

Note that, unlike Eq. (2.8), this equation includes the corrections needed for the
ground state. For the other energy eigenstates, one can check that Eq. (2.26) agrees
with Eq. (2.8).

For later use, Eqs. (2.26) and (2.8), without the ground state correction for the
case U(t)|ψ〉 = |ψ〉, can be generalised to the form

Hop = C − πi

T

tn<T∑

tn>0

Uop(tn)

tan(πtn/T )

T →∞−→ C − i
∑

tn 
=0

Uop(tn)

tn
, (2.27)
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where C is a (large) constant, T is the period, and tn = nδt is the set of times where
the operator U(tn) is required to have some definite value. We note that this is a
sum, not an integral, so when the time values are very dense, the Hamiltonian tends
to become very large. There seems to be no simple continuum limit. Nevertheless,
in Part II, we will attempt to construct a continuum limit, and see what happens
(Sect. 13).

Again, if we impose the Schrödinger equation d
dt

|ψ〉t = −iHop|ψ〉t and the
boundary condition |ψ〉t=0 = |n0〉ont, then this state obeys the deterministic evo-
lution law (2.20) at integer times t . If we take superpositions of the states |n〉ont

with the Born rule interpretation of the complex coefficients, then the Schrödinger
equation still correctly describes the evolution of these Born probabilities.

It is of interest to note that the energy spectrum (2.24) is frequently encountered
in physics: it is the spectrum of an atom with total angular momentum J = 1

2 (N −1)

and magnetic moment μ in a weak magnetic field: the Zeeman atom. We observe
that, after the discrete Fourier transformation (2.21), a Zeeman atom may be re-
garded as the simplest deterministic system that hops from one state to the next in
discrete time intervals, visiting N states in total.

As in the Zeeman atom, we may consider the option of adding a finite, univer-
sal quantity δE to the Hamiltonian. It has the effect of rotating all states with the
complex amplitude e−iδE after each time step. For a simple cogwheel, this might
seem to be an innocuous modification, with no effect on the physics, but below we
shall see that the effect of such an added constant might become quite significant
later.

Note that, if we introduce any kind of perturbation on the Zeeman atom, caus-
ing the energy levels to be split in intervals that are no longer equal, it will no
longer look like a cogwheel. Such systems will be a lot more difficult to describe
in a deterministic theory; they must be seen as parts of a much more complex
world.

2.2.2 The Most General Deterministic, Time Reversible, Finite
Model

Generalizing the finite models discussed earlier in this chapter, consider now a
model with a finite number of states, and an arbitrary time evolution law. Start with
any state |n0〉ont, and follow how it evolves. After some finite number, say N0, of
time steps, the system will be back at |n0〉ont. However, not all states |n〉ont may have
been reached. So, if we start with any of the remaining states, say |n1〉ont, then a new
series of states will be reached, and the periodicity might be a different number, N1.
Continue until all existing states of the model have been reached. We conclude that
the most general model will be described as a set of simple periodic cogwheel mod-
els with varying periodicities, but all working with the same universal time step δt ,
which we could normalize to one; see Fig. 2.2.
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Fig. 2.2 Example of a more
generic finite, deterministic,
time reversible model

Figure 2.3 shows the energy levels of a simple periodic cogwheel model (left),
a combination of simple periodic cogwheel models (middle), and the most general
deterministic, time reversible, finite model (right). Note that we now shifted the
energy levels of all cogwheels by different amounts δEi . This is allowed because the
index i, telling us which cogwheel we are in, is a conserved quantity; therefore these
shifts have no physical effect. We do observe the drastic consequences however
when we combine the spectra into one, see Fig. 2.3c.

Figure 2.3 clearly shows that the energy spectrum of a finite discrete determinis-
tic model can quickly become quite complex.4 It raises the following question: given
any kind of quantum system, whose energy spectrum can be computed. Would it be
possible to identify a deterministic model that mimics the quantum model? To what
extent would one have to sacrifice locality when doing this? Are there classes of
deterministic theories that can be mapped on classes of quantum models? Which of
these would be potentially interesting?

Fig. 2.3 a Energy spectrum of the simple periodic cogwheel model. δE is an arbitrary energy
shift. b Energy spectrum of the model sketched in Fig. 2.2, where several simple cogwheel models
are combined. Each individual cogwheel i may be shifted by an arbitrary amount δEi . c Taking
these energy levels together we get the spectrum of a generic finite model

4It should be self-evident that the models displayed in the figures, and subsequently discussed, are
just simple examples; the real universe will be infinitely more complicated than these. One critic
of our work was confused: “Why this model with 31 states? What’s so special about the number
31?” Nothing, of course, it is just an example to illustrate how the math works.
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